## Marking Scheme Strictly Confidential (For Internal and Restricted use only) Secondary School Examination, 2023 MATHEMATICS PAPER CODE 30/1/1

## 1 You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. 2 "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted. Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC." 3 Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. 4 The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded

- accordingly.

  The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark ( $\sqrt{\ }$ ) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ( $\sqrt{\ }$ ) while evaluating which gives an impression that answer is correct and no marks are awarded. **This is most common mistake which evaluators are committing.**
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- In Q1-Q20, if a candidate attempts the question more than once (without canceling the previous attempt), marks shall be awarded for the first attempt only and the other answer scored out with a note "Extra Question".
- In Q21-Q38, if a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- 11 No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- A full scale of marks \_\_\_\_\_(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

**General Instructions: -**

| 13  | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day    |
|-----|--------------------------------------------------------------------------------------------------------|
| 13  | and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects    |
|     | (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of          |
|     |                                                                                                        |
| 1.4 | questions in question paper.                                                                           |
| 14  | Ensure that you do not make the following common types of errors committed by the Examiner in          |
|     | the past:-                                                                                             |
|     | • Leaving answer or part thereof unassessed in an answer book.                                         |
|     | • Giving more marks for an answer than assigned to it.                                                 |
|     | <ul> <li>Wrong totaling of marks awarded on an answer.</li> </ul>                                      |
|     | • Wrong transfer of marks from the inside pages of the answer book to the title page.                  |
|     | • Wrong question wise totaling on the title page.                                                      |
|     | <ul> <li>Wrong totaling of marks of the two columns on the title page.</li> </ul>                      |
|     | Wrong grand total.                                                                                     |
|     | <ul> <li>Marks in words and figures not tallying/not same.</li> </ul>                                  |
|     | <ul> <li>Wrong transfer of marks from the answer book to online award list.</li> </ul>                 |
|     | • Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly      |
|     | and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)           |
|     | Half or a part of answer marked correct and the rest as wrong, but no marks awarded.                   |
| 15  | While evaluating the answer books if the answer is found to be totally incorrect, it should be marked  |
|     | as cross (X) and awarded zero (0)Marks.                                                                |
| 16  | Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by   |
|     | the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also    |
|     | of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the |
|     | instructions be followed meticulously and judiciously.                                                 |
| 17  | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot         |
|     | <b>Evaluation</b> " before starting the actual evaluation.                                             |
| 18  | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title   |
|     | page, correctly totaled and written in figures and words.                                              |
| 19  | The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the        |
|     | prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once             |
|     | again reminded that they must ensure that evaluation is carried out strictly as per value points for   |
|     | each answer as given in the Marking Scheme.                                                            |
|     |                                                                                                        |
| 1   |                                                                                                        |

## MARKING SCHEME MATHEMATICS (Subject Code-041) (PAPER CODE: 30/1/1)

| Q. No. | EXPECTED OUTCOMES/VALUE POINTS                                                                                                                | Marks |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
|        | SECTION A                                                                                                                                     |       |
|        | Questions no. 1 to 18 are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each |       |
| 1.     | The graph of $y = p(x)$ is given, for a polynomial $p(x)$ . The number of zeroes of $p(x)$ from the graph is                                  |       |
|        | (A) 3 (B) 1 (C) 2 (D) 0                                                                                                                       |       |
|        | $x' \longleftrightarrow x$ $y$ $y = p(x)$                                                                                                     |       |
| Sol.   | (B) 1                                                                                                                                         | 1     |
| 2.     | The value of $k$ for which the pair of equations $kx = y + 2$ and $6x = 2y + 3$ has infinitely many solutions,                                |       |
|        | (A) is $k = 3$ (B) does not exist (C) is $k = -3$ (D) is $k = 4$                                                                              |       |
| Sol.   | (B) does not exist                                                                                                                            | 1     |
| 3.     | If $p-1$ , $p+1$ and $2p+3$ are in A.P., then the value of $p$ is (A) $-2$ (B) 4 (C) 0 (D) 2                                                  |       |
| Sol.   | (C) 0                                                                                                                                         | 1     |
| 4.     | In what ratio, does <i>x</i> -axis divide the line segment joining the points $A(3,6)$ and $b(-12,-3)$ ?                                      |       |
|        | (A) 1:2 (B) 1:4 (C) 4:1 (D) 2:1                                                                                                               |       |

| Sol. | (D) 2:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 5.   | In the given figure, $PQ$ is tangent to the circle centred at O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
|      | If $\angle AOB = 95^{\circ}$ , then the measure of $\angle ABQ$ will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | 95°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|      | A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | (D) 42.5° (C) 95° (D) 05°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|      | (A) $47.5^{\circ}$ (B) $42.5^{\circ}$ (C) $85^{\circ}$ (D) $95^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Sol. | (A) 47.5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |
|      | If $2 \tan A = 3$ , then the value of $\frac{4 \sin A + 3 \cos A}{4 \sin A + 3 \cos A}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| 6.   | If $2 \tan A = 3$ , then the value of $\frac{1}{4 \sin A - 3 \cos A}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | (A) $\frac{7}{\sqrt{13}}$ (B) $\frac{1}{\sqrt{13}}$ (C) 3 (D) does not exist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | V13 V13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Sol. | (C) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |
| 7.   | If $\alpha, \beta$ are the zeroes of a polynomial $p(x) = x^2 + x - 1$ , then $\frac{1}{\alpha} + \frac{1}{\beta}$ equals to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|      | u p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|      | (A) 1 (B) 2 (C) $-1$ (D) $\frac{-1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | (A) $(B)$ $(B)$ $(C)$ |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Sol. | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |
| 0    | The least positive value of $k$ , for which the quadratic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 8.   | $2x^2 + kx - 4 = 0$ has rational roots, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|      | (A) $\pm 2\sqrt{2}$ (B) 2 (C) $\pm 2$ (D) $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| Sol. | (B) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |
| 9.   | $\frac{3}{4} \tan^2 30^0 - \sec^2 45^0 + \sin^2 60^0$ is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      | (A) $-1$ (B) $\frac{5}{6}$ (C) $\frac{-3}{2}$ (D) $\frac{1}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| Sol. | (A) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |

| 10.  | Curved surface area of a cylinder of height 5 cm is 94.2 cm $^2$ . Radius of the cylinder is (Take $\pi = 3.14$ ) |                      |                    |            |                               |                  |                   |       |   |
|------|-------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|------------|-------------------------------|------------------|-------------------|-------|---|
|      | (A) 2 cm                                                                                                          | (B) 3 cı             |                    | (C) 2.9 c  | m (D)                         | 6 cm             |                   |       |   |
| Sol. | (B) 3                                                                                                             |                      |                    |            |                               |                  |                   |       | 1 |
| 11.  | The distribution                                                                                                  |                      |                    | narks obt  | ained by 8                    | 0 studen         | ts on a te        | st:   |   |
|      | Marks                                                                                                             | Less                 | Less               | Less       | Less                          | Less             | Less              |       |   |
|      |                                                                                                                   | than 10              | than<br>20         | than<br>30 | than 40                       | than<br>50       | than<br>60        |       |   |
|      | Number of<br>Students                                                                                             | 3                    | 12                 | 27         | 57                            | 75               | 80                |       |   |
|      | The modal class                                                                                                   | s of this d          | stributio          | n is:      |                               |                  | I                 | _     |   |
|      | (A) 10-20<br>(C) 30-40                                                                                            |                      |                    |            |                               | (B) 20<br>(D) 50 |                   |       |   |
| Sol. | (C) $30 - 40$                                                                                                     |                      |                    |            |                               |                  |                   |       | 1 |
| 12.  | The curved sur                                                                                                    | face area c          | of a cone          | having h   | eight 24 cr                   | n and rac        | dius 7 cm         | ı, is |   |
|      | (A) 528 cm <sup>2</sup>                                                                                           | (B) 105              | 56 cm <sup>2</sup> | (C) 55     | 0 cm <sup>2</sup>             | (D) 500          | cm <sup>2</sup>   |       |   |
| Sol. | (C)550cm <sup>2</sup>                                                                                             |                      |                    |            | 1                             |                  |                   |       |   |
| 13.  | The distance between the points $(0,2\sqrt{5})$ and $(-2\sqrt{5},0)$ is                                           |                      |                    |            |                               |                  |                   |       |   |
|      | (A) $2\sqrt{10}$ units (B) $4\sqrt{10}$ units (C) $2\sqrt{20}$ units (D) 0                                        |                      |                    |            |                               |                  |                   |       |   |
| Sol. | (A) $2\sqrt{10}$ units                                                                                            |                      |                    |            |                               |                  | 1                 |       |   |
| 14.  | Which of the following is a quadratic polynomial having zeroes $\frac{-2}{3}$ and $\frac{2}{3}$ ?                 |                      |                    |            |                               |                  |                   |       |   |
|      | (A) $4x^2 - 9$                                                                                                    | (B) $\frac{4}{9}$ (9 | $9x^2 + 4$ )       | (C) $x^2$  | $\frac{2}{4} + \frac{9}{4}$ ( | (D) 5(9 <i>x</i> | <sup>2</sup> – 4) |       |   |
| Sol. | (D) $5(9x^2-4)$                                                                                                   |                      |                    |            |                               |                  |                   |       | 1 |
| 15.  | If the value of each observation of a statistical data is increased by 3, then the mean of the data               |                      |                    |            |                               |                  |                   |       |   |
|      | (A) remains un                                                                                                    | changed              |                    | (B)        | increases                     | by 3             |                   |       |   |
|      | (C) increases by                                                                                                  | y 6                  |                    | (Γ         | ) increases                   | s by 3n          |                   |       |   |
| Sol. | (B) increases by                                                                                                  | y 3                  |                    |            |                               |                  |                   |       | 1 |

| 1.0  | Probability of happening of an event is denoted by $p$ and probability of non-                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 16.  | happening of the event is denoted by $q$ . Relation between $p$ and $q$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |
|      | (A) $p+q=1$ (B) $p=1, q=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |
|      | (C) $p = q - 1$ (D) $p + q + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |
| Sol. | (A) p + q = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |  |
| 17.  | A girl calculates that the probability of her winning the first prize in a lottery is 0.08. If 6000 tickets are sold, how many tickets has she bought?                                                                                                                                                                                                                                                                                                                                                                              |   |  |
|      | (A) 40 (B) 240 (C) 480 (D) 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |
| Sol. | (C) 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |  |
| 18.  | In a group of 20 people, 5 can't swim. If one person is selected at random, then the probability that he/she can swim, is                                                                                                                                                                                                                                                                                                                                                                                                           |   |  |
|      | (A) $\frac{3}{4}$ (B) $\frac{1}{3}$ (C) 1 (D) $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |  |
| Sol. | (A) 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 |  |
|      | Assertion-Reason Type Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |
|      | <ul> <li>In Question 19 and 20, an Assertion (A) statement is followed by a statement of Reason (R). Select the correct option out of the following:</li> <li>(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).</li> <li>(B) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).</li> <li>(C) Assertion (A) is true but Reason (R) is false.</li> <li>(D) Assertion (A) is false but Reason (R) is true.</li> </ul> |   |  |
| 19.  | Assertion (A): Point $P(0, 2)$ is the point of intersection of y-axis with the                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |  |
|      | line 3x + 2y = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |  |
|      | Reason (R): The distance of point $P(0, 2)$ from x-axis is 2 units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |  |
| Sol. | (B) Both Assertion (A) and Reason (R) are correct but Reason (R) is not the correct explanation of Assertion (A)                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 |  |

| 20.  | Assertion (A): The perimeter of $\triangle ABC$ is a rational number. |   |
|------|-----------------------------------------------------------------------|---|
| 20.  | Reason (R): The sum of the squares of two rational numbers is always  |   |
|      | rational.                                                             |   |
|      | 2 cm<br>3 cm                                                          |   |
| Sol. | (D) Assertion (A) is false but Reason (R) is true                     | 1 |

|        | SECTION B                                                                                       |   |
|--------|-------------------------------------------------------------------------------------------------|---|
|        | This section comprises of Very Short Answer (VSA) type questions of 2 marks each.               |   |
| 21(a). | Solve the pair of equations $x = 3$ and $y = -4$ graphically.                                   |   |
| Sol.   | Correct graph of both the equations.                                                            | 1 |
|        | Solution of equation is $x = 3$ , $y = -4$                                                      | 1 |
|        | OR                                                                                              |   |
| 21(b). | Using graphical method, find whether following system of linear equations is consistent or not: |   |
|        | x = 0 and $y = -7$                                                                              |   |
| Sol.   | Correct graph of $y = -7$ and $x = 0$                                                           | 1 |
|        | As $y = -7$ is intersecting $x = 0$ at $(0, -7)$                                                |   |
|        | So, system of equations is consistent                                                           | 1 |
| 22.    | In the given figure, XZ is parallel to BC. AZ = 3 cm, ZC = 2 cm,                                |   |
|        | BM = 3 cm and $MC = 5$ cm. Find the length of XY.                                               |   |

|        | A $Y$ $Z$ $M$ $C$                                                                                                     |     |
|--------|-----------------------------------------------------------------------------------------------------------------------|-----|
| Sol.   | As $XZ \parallel BC$ Therefore $\frac{AX}{XB} = \frac{3}{2} = \frac{AZ}{ZC}$ (i)                                      | 1/2 |
|        | $\Delta AXY \sim \Delta ABM$                                                                                          | 1/2 |
|        | $\Rightarrow \frac{AX}{AB} = \frac{XY}{BM} \text{ or } \frac{3}{5} = \frac{XY}{3}$                                    | 1/2 |
|        | $\Rightarrow XY = \frac{9}{5} \text{ or } 1.8 \text{ cm}$                                                             | 1/2 |
| 23(a). | If $sin\theta + cos\theta = \sqrt{3}$ , then find the value of $sin\theta \cdot cos\theta$ .                          |     |
| Sol.   | $\sin\theta + \cos\theta = \sqrt{3}$                                                                                  |     |
|        | squaring both sides                                                                                                   |     |
|        | $\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$                                                             | 1   |
|        | $\Rightarrow 1 + 2\sin\theta\cos\theta = 3$                                                                           | 1/2 |
|        | $\Rightarrow \sin \theta \cos \theta = 1$                                                                             | 1/2 |
|        | OR                                                                                                                    |     |
| 23(b). | If $\sin \alpha = \frac{1}{\sqrt{2}}$ and $\cot \beta = \sqrt{3}$ , then find the value of $\csc \alpha + \csc \beta$ |     |
|        |                                                                                                                       |     |

| Sol. | $\csc \alpha = \frac{1}{\sin \alpha} = \sqrt{2}$                                                                                                        | 1/2 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | $\csc \beta = \sqrt{1 + \cot^2 \beta} = \sqrt{1 + 3} = 2$                                                                                               | 1   |
|      | $\therefore  \csc \alpha + \csc \beta = \sqrt{2} + 2 \text{ or } \sqrt{2} (\sqrt{2} + 1)$                                                               | 1/2 |
| 24.  | Find the greatest number which divides 85 and 72 leaving remainders 1 and 2 respectively.                                                               |     |
| Sol. | We have to find HCF of $85 - 1 = 84$ and $72 - 2 = 70$ .                                                                                                | 1   |
|      | HCF of 84 and 70 = 14                                                                                                                                   | 1   |
| 25.  | A bag contains 4 red, 3 blue and 2 yellow balls. One ball is drawn at random from the bag. Find the probability that drawn ball is (i) red (ii) yellow. |     |
| Sol. | Total No of Balls=9                                                                                                                                     |     |
|      | (i) P(drawn ball is red) = $\frac{4}{9}$                                                                                                                | 1   |
|      | (ii) P(drawn ball is yellow) = $\frac{2}{9}$                                                                                                            | 1   |
|      | SECTION C                                                                                                                                               |     |
|      | This section comprises of Short Answer (SA) type questions of 3 marks each.                                                                             |     |
| 26.  | Half of the difference between two numbers is 2. The sum of the greater number and twice the smaller number is 13. Find the numbers.                    |     |
| Sol. | Let the numbers be x and y, $x > y$                                                                                                                     |     |
|      | Therefore $\frac{1}{2}(x-y) = 2$ — (i)                                                                                                                  | 1   |
|      | and $2y + x = 13$ — (ii)<br>Solving equations (i) and (ii)                                                                                              | 1   |
|      | x = 7, y = 3                                                                                                                                            | 1   |

| 27     |                                                                                                                         |                        |     |
|--------|-------------------------------------------------------------------------------------------------------------------------|------------------------|-----|
| 27.    | Prove that $\sqrt{5}$ is an irrational number.                                                                          |                        |     |
| Sol.   | Let $\sqrt{5}$ be a rational number.                                                                                    |                        |     |
|        | $\therefore \sqrt{5} = \frac{p}{q}$ , where $q\neq 0$ and let p & q be co-primes.                                       |                        | 1/2 |
|        | $5q^2 = p^2 \Longrightarrow p^2$ is divisible by $5 \Longrightarrow p$ is divisible by $5$                              |                        |     |
|        | $\Rightarrow$ p = 5a, where 'a' is some integer (i)                                                                     |                        | 1   |
|        | $25a^2 = 5q^2 \Longrightarrow q^2 = 5a^2 \Longrightarrow q^2$ is divisible by $5 \Longrightarrow q$ is div              | isible by 5            | 1/2 |
|        | $\Rightarrow$ q = 5b, where 'b' is some integer (ii)                                                                    |                        |     |
|        | <ul> <li>(i) and (ii) leads to contradiction as 'p' and 'q' are co-pr</li> <li>∴ √5 is an irrational number.</li> </ul> | imes.                  | 1   |
| 28.    | If $(-5,3)$ and $(5,3)$ are two vertices of an equilateral                                                              | l triangle, then find  |     |
| 26.    | coordinates of the third vertex, given that origin lies inside                                                          | de the triangle. (Take |     |
|        | $\sqrt{3} = 1.7)$                                                                                                       |                        |     |
|        |                                                                                                                         |                        |     |
| Sol.   | Let the third vertex $A (-5,3)  B(5,3)$ $AB=10=AC$ $AC^{2}=100$ $(-5-x)^{2}+(3-y)^{2}=(5-x)^{2}$                        | C(x,y)                 | 1   |
|        | 20x = 0                                                                                                                 | , (= 3)                | 1   |
|        | x=0                                                                                                                     |                        | 1/2 |
|        | $(3-y)^{2}=75$ $3-y = \pm 5\sqrt{3}$ $y=3-5\sqrt{3}$                                                                    |                        |     |
|        | y= -5.5                                                                                                                 |                        |     |
|        | The coordinates of the third vertex are (0,-5.5                                                                         | )                      | 1/2 |
| 29(a). | Two tangents TP and TQ are drawn to a circle with centre point T. Prove that $\angle PTQ = 2 \angle OPQ$ .              | e O from an external   |     |

|        | O $Q$ $T$                                                                                                                                                                        |   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Sol.   | TP = TQ                                                                                                                                                                          |   |
|        | $\Rightarrow \angle \text{TPQ} = \angle \text{TQP}$                                                                                                                              | 1 |
|        | L ( APTO L O                                                                                                                                                                     |   |
|        | Let $\angle$ PTQ be $\theta$                                                                                                                                                     |   |
|        | $\Rightarrow \angle \text{TPQ} = \angle \text{TQP} = \frac{180^{\circ} - \theta}{2} = 90^{\circ} - \frac{\theta}{2}$                                                             | 1 |
|        | Now $\angle$ OPT = 90°                                                                                                                                                           |   |
|        | $\Rightarrow \angle OPQ = 90^{\circ} - (90^{\circ} - \frac{\theta}{2}) = \frac{\theta}{2}$                                                                                       |   |
|        | $\angle PTQ = 2 \angle OPQ$                                                                                                                                                      | 1 |
|        | OR                                                                                                                                                                               |   |
| 29(b). | In the given figure, a circle is inscribed in a quadrilateral ABCD in which $\angle B = 90^{\circ}$ . If AD=17 cm, AB = 20 cm and DS = 3 cm, then find the radius of the circle. |   |
|        | R. O r P P B                                                                                                                                                                     |   |
|        |                                                                                                                                                                                  |   |

| Sol.   | A P P P B                                                                                                                                                                                                                                                                      |        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|        | DR = DS = 3  cm                                                                                                                                                                                                                                                                | 1/2    |
|        | $\therefore AR = AD - DR = 17 - 3 = 14 \text{ cm}$ $\Rightarrow AQ = AR = 14 \text{ cm}$                                                                                                                                                                                       | 1 1/2  |
|        | $\therefore$ QB = AB – AQ = 20 – 14 = 6 cm                                                                                                                                                                                                                                     | 1/2    |
|        | Since $QB = OP = r$ : radius = 6 cm                                                                                                                                                                                                                                            | 1/2    |
| 30.    | Prove that: $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \frac{1 + \sin \theta}{\cos \theta}$                                                                                                                                                        |        |
| Sol.   | LHS= $\frac{(\tan \theta + \sec \theta) - (\sec^2 \theta - \tan^2 \theta)}{\tan \theta - \sec \theta + 1}$ $= \frac{(\tan \theta + \sec \theta) (1 - \sec \theta + \tan \theta)}{\tan \theta - \sec \theta + 1}$                                                               | 1<br>1 |
|        | $= tan\theta + sec\theta$                                                                                                                                                                                                                                                      | 1/2    |
|        | $= \frac{1 + \sin \theta}{\cos \theta} = RHS$                                                                                                                                                                                                                                  | 1/2    |
| 31(a). | A room is in the form of cylinder surmounted by a hemi-spherical dome. The base radius of hemisphere is one-half the height of cylindrical part. Find total height of the room if it contains $\left(\frac{1408}{21}\right)m^3$ of air. Take $\left(\pi = \frac{22}{7}\right)$ |        |

|        | T                                                                                                  |     |
|--------|----------------------------------------------------------------------------------------------------|-----|
| Sol.   | Let h be height of cylindrical part and r be radius of hemisphere                                  | 1/2 |
|        | Volume of room = $2\pi r^3 + \frac{2}{3}\pi r^3 = \frac{1408}{21}$                                 | 1   |
|        |                                                                                                    |     |
|        | $\Rightarrow_{\mathbf{r}} = 2$                                                                     | 1/2 |
|        | Therefore, h=4                                                                                     | 1/2 |
|        | Height of the room is = 6m                                                                         | 1/2 |
|        | OR                                                                                                 |     |
| 31(b). | An empty cone is of radius 3 cm and height 12 cm. Ice-cream is filled                              |     |
|        | in it so that lower part of the cone which is $\left(\frac{1}{6}\right)^{th}$ of the volume of the |     |
|        | cone is unfilled but hemisphere is formed on the top. Find volume of the                           |     |
|        | ice-cream. (Take $\pi = 3.14$ )                                                                    |     |
|        |                                                                                                    |     |
|        |                                                                                                    |     |
|        | V                                                                                                  |     |
| Sol.   | Volume of the cone = $=\frac{1}{3} \times \pi \times 9 \times 12 = 36\pi cm^3$                     | 1   |
|        | Volume of ice-cream in the cone = $\frac{5}{6} \times 36 \times \pi = 30\pi cm^3$                  | 1/2 |
|        | Volume of ice-cream on top = $\frac{2}{3} \times 27 \times \pi = 18\pi cm^3$                       | 1   |
|        | Total volume of the ice-cream = $(30\pi + 18\pi) = 48\pi cm^3$                                     |     |
|        | $= 48 \times 3.14 = 150.72 cm^3$                                                                   | 1/2 |
|        | SECTION D                                                                                          |     |
|        | This section comprises of Long Answer (LA) type questions of 5 marks each.                         |     |

| 32.    | If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, prove that the other two sides are divided in the same ratio.                                                                                                                                                                                      |                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|        |                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Sol.   | Correct Given, to prove, figure, construction                                                                                                                                                                                                                                                                                                                 | 2                                  |
|        | Correct proof                                                                                                                                                                                                                                                                                                                                                 | 3                                  |
| 33(a). | The angle of elevation of the top of a tower 24 m high from the foot of another tower in the same plane is 60°. The angle of elevation of the top of second tower from the foot of the first tower is 30°. Find the distance between two towers and the height of the other tower. Also, find the length of the wire attached to the tops of both the towers. |                                    |
| Sol.   | Let AB and CD be the given towers.                                                                                                                                                                                                                                                                                                                            | 1 mark<br>for<br>correct<br>figure |
|        | $\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{h}{x} \Rightarrow x = h\sqrt{3}  \underline{\hspace{1cm}} (i)$                                                                                                                                                                                                                                                    | 1                                  |
|        | $\tan 60^{\circ} = \sqrt{3} = \frac{24}{x} \Rightarrow x = \frac{24}{\sqrt{3}} \text{ or } 8\sqrt{3}$ (ii)                                                                                                                                                                                                                                                    | 1                                  |
|        | using (i) and (ii)                                                                                                                                                                                                                                                                                                                                            |                                    |
|        | $x = 8\sqrt{3}$ and $h = 8$                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{2} + \frac{1}{2}$        |
|        | length of wire = $\sqrt{BE^2 + x^2} = \sqrt{256 + 192} = \sqrt{448} \text{ m} = 8\sqrt{7} \text{ m}$                                                                                                                                                                                                                                                          | 1                                  |

|        | OR                                                                                                                                                                                                                                                    |                                    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 33(b). | A spherical balloon of radius r subtends an angle of $60^{0}$ at the eye of an observer. If the angle of elevation of its centre is $45^{0}$ from the same point, then prove that height of the centre of the balloon is $\sqrt{2}$ times its radius. |                                    |
| Sol.   | B A                                                                                                                                                                                                                                                   | 1 mark<br>for<br>correct<br>figure |
|        | Let Point B represents observer.<br>$\therefore \angle QBP = 60^{\circ}; \angle ABO = 45^{\circ}$                                                                                                                                                     |                                    |
|        | Using geometry $\angle PBO = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$<br>Now, $\frac{r}{OB} = \sin 30^{\circ} = \frac{1}{2} \Rightarrow OB = 2r$ — (i)                                                                                             | 1                                  |
|        | Also $\frac{OA}{OB} = \sin 45^\circ = \frac{1}{\sqrt{2}} \Rightarrow OB = OA \sqrt{2}$ (ii)                                                                                                                                                           | 1                                  |
|        | Using (i) and (ii) $OA = \sqrt{2} r$ or height of center of balloon = $\sqrt{2} r$ units                                                                                                                                                              | 1                                  |
| 34.    | A chord of a circle of radius 14 cm subtends an angle of 60 <sup>0</sup> at the centre. Find the area of the corresponding minor segment of the circle. Also find the area of the major segment of the circle.                                        |                                    |
| Sol.   | Area of minor segment = $\frac{22}{7} \times 14 \times 14 \times \frac{60}{360} - \frac{1}{2} \times 14 \times 14 \times \frac{\sqrt{3}}{2}$                                                                                                          | 1+1                                |
|        | $= \left(\frac{308}{3} - 49\sqrt{3}\right) cm^2 \text{ or } 17.9 \text{cm}^2$                                                                                                                                                                         | 1                                  |

|        | 22 44 (308 40 (5)                                                                                                                |   |
|--------|----------------------------------------------------------------------------------------------------------------------------------|---|
|        | Area of major segment = $\frac{22}{7} \times 14 \times 14 - \left(\frac{308}{3} - 49\sqrt{3}\right)$                             |   |
|        | $=616-\frac{308}{3}+49\sqrt{3}$                                                                                                  | 1 |
|        | 3                                                                                                                                |   |
|        | $= \left(\frac{1540}{3} + 49\sqrt{3}\right) cm^2 \text{ or } 598.1 \text{ cm}^2$                                                 | 1 |
| 35(a). | The ratio of the 11 <sup>th</sup> term to 17 <sup>th</sup> term of an A.P. is 3:4. Find the ratio of                             |   |
|        | 5 <sup>th</sup> term to 21 <sup>st</sup> term of the same A.P. Also, find the ratio of the sum of                                |   |
|        | first 5 terms to that of first 21 terms.                                                                                         |   |
|        |                                                                                                                                  |   |
| Sol.   | Given a + 10d 3                                                                                                                  | 1 |
| 501.   | Given $\frac{a+10d}{a+16d} = \frac{3}{4}$                                                                                        | 1 |
|        | $\Rightarrow 4a + 40d = 3a + 48d$                                                                                                |   |
|        | $\Rightarrow$ a = 8d (i)                                                                                                         | 1 |
|        | $a_5$ $a+4d$ $a_5$ $a+4d$                                                                                                        |   |
|        | therefore $\frac{a_5}{a_{21}} = \frac{a+4d}{a+20d} = \frac{3}{7}$ using (i)                                                      | 1 |
|        | 21                                                                                                                               |   |
|        | $a_5: a_{2,1} = 3:7$                                                                                                             |   |
|        | -                                                                                                                                |   |
|        | $\frac{5}{2}(2a + 4d)$ 5 × 20d 25                                                                                                |   |
|        | $\frac{s_5}{s_{21}} = \frac{\frac{5}{2}(2a + 4d)}{\frac{21}{2}(2a + 20d)} = \frac{5 \times 20d}{21 \times 36d} = \frac{25}{189}$ | 2 |
|        | $\frac{-21}{2}(2a + 20d)$ 21 × 30d 103                                                                                           |   |
|        | Therefore, S <sub>5</sub> :S <sub>21</sub> =25:189                                                                               |   |
|        | OR                                                                                                                               |   |
| 25(1)  | 250 logs are stacked in the following manner:                                                                                    |   |
| 35(b). | 22 logs in the bottom row, 21 in the next row, 20 in the row next to it and so                                                   |   |
|        | on (as shown by an example). In how many rows, are the 250 logs placed and                                                       |   |
|        | how many logs are there in the top row?                                                                                          |   |
|        |                                                                                                                                  |   |
|        | []_ [_ ]_ }                                                                                                                      |   |
|        |                                                                                                                                  |   |
|        |                                                                                                                                  |   |
|        | (Example)                                                                                                                        |   |
| C a 1  |                                                                                                                                  |   |
| Sol.   | Let the number of rows be n.                                                                                                     |   |
|        | A.P. formed is 22, 21, 20, 19,                                                                                                   |   |

|      | Here $a = 22$ , $d = -1$ Sn = 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 |  |  |  |
|      | $\therefore 250 = \frac{n}{2} [44 + (n-1)(-1)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 |  |  |  |
|      | $\Rightarrow n^2 - 45n + 500 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 |  |  |  |
|      | $\Rightarrow (n-25) (n-20) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |
|      | $n \neq 25$ : $n = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |  |  |  |
|      | logs in top row = $a_{20} = 22 + 19 (-1) = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |  |  |  |
|      | SECTION E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |  |  |  |
|      | This section comprises of 3 case-study based questions of 4 marks each.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
| 36.  | While designing the school year book, a teacher asked the student that the length and width of a particular photo is increased by <i>x</i> units each to double the area of the photo. The original photo is 18 cm long and 12 cm wide. Based on the above information, answer the following questions:  (I) Write an algebraic equation depicting the above information.  (II) Write the corresponding quadratic equation in standard form.  (III) What should be the new dimensions of the enlarged photo?  OR  Can any rational value of <i>x</i> make the new area equal to 220 <i>cm</i> <sup>2</sup> |   |  |  |  |
| Sol. | (i) $(18 + x) (12 + x) = 2(18 \times 12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 |  |  |  |
|      | (ii) $x^2 + 30x - 216 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 |  |  |  |
|      | (iii) Solving: $x^2 + 30x - 216 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |  |  |  |
|      | $\Rightarrow (x + 36) (x - 6) = 0$ $x \neq -36 : \Rightarrow x = 6.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 |  |  |  |
|      | $x \leftarrow -30 \cdot \cdot \Rightarrow x = 0.$ new dimensions are 24 cm × 18 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |  |  |  |

## OR

(iii) If 
$$(18 + x) (12 + x) = 220$$

then 
$$x^2 + 30x - 4 = 0$$

Here D = 900 + 16 = 916 which is not a perfect square.

Thus we can't have any such rational value of x.

37. India meteorological department observes seasonal and annual rainfall every year in different sub-divisions of our country.



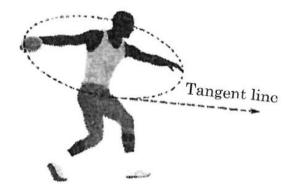
It helps them to compare and analyse the results. The table given below shows sub-division wise seasonal (monsoon) rainfall (mm) in 2018:

| Rainfall (mm) | Number of Sub-divisions |
|---------------|-------------------------|
| 200-400       | 2                       |
| 400-600       | 4                       |
| 600-800       | 7                       |
| 800-1000      | 4                       |
| 1000-1200     | 2                       |
| 1200-1400     | 3                       |
| 1400 -1600    | 1                       |
| 1600-1800     | 1                       |

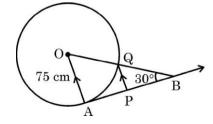
Based on the above information, answer the following questions:

- (I) Write the modal class.
- (II) Find the median of the given data.

1


1

|      |                                                                                          |                | OR             |                               |                        |         |
|------|------------------------------------------------------------------------------------------|----------------|----------------|-------------------------------|------------------------|---------|
|      | (II) Find the me                                                                         | an rainfall    | in this seaso  | n.                            |                        |         |
|      |                                                                                          |                |                |                               | during monsoon season, |         |
|      | is considered good rainfall sub-division, then how many sub-divisions had good rainfall? |                |                |                               |                        |         |
|      |                                                                                          |                |                |                               |                        |         |
| Sol. | (i) Modal Class is 600-800                                                               |                |                |                               |                        |         |
|      | (ii) $\frac{N}{2}$ = 12, median class is $600 - 800$                                     |                |                |                               |                        |         |
|      | Rainfall                                                                                 | x <sub>i</sub> | f <sub>i</sub> | cf.                           |                        |         |
|      | 200 – 400                                                                                | 300            | 2              | 2                             |                        |         |
|      | 400 – 600                                                                                | 500            | 4              | 6                             |                        |         |
|      | 600 – 800                                                                                | 700            | 7              | 13                            |                        |         |
|      | 800 – 1000                                                                               | 900            | 4              | 17                            |                        |         |
|      | 1000 – 1200                                                                              | 1100           | 2              | 19                            |                        |         |
|      | 1200 – 1400                                                                              | 1300           | 3              | 22                            |                        | ½ for   |
|      | 1400 – 1600                                                                              | 1500           | 1              | 23                            |                        | correct |
|      | 1600 – 1800                                                                              | 1700           | 1              | 24                            |                        | table   |
|      |                                                                                          |                | 24             |                               |                        |         |
|      | Median = $600 + \frac{200}{7} (12 - 6)$<br>= $\frac{5400}{7}$ or $771.4$                 |                |                |                               |                        |         |
|      | OR                                                                                       |                |                |                               |                        |         |
|      | (ii)                                                                                     |                |                |                               |                        |         |
|      | Rainfall                                                                                 | x <sub>i</sub> | f <sub>i</sub> | f <sub>i</sub> x <sub>i</sub> |                        |         |
|      | 200 – 400                                                                                | 300            | 2              | 600                           |                        |         |
|      | 400 – 600                                                                                | 500            | 4              | 2000                          |                        |         |


| 600 - 800                 | 700   | 7  | 4900  |                  |
|---------------------------|-------|----|-------|------------------|
| 800 – 1000                | 900   | 4  | 3600  |                  |
| 1000 – 1200               | 1100  | 2  | 2200  | 1 for            |
| 1200 – 1400               | 1300  | 3  | 3900  | correct<br>table |
| 1400 – 1600               | 1500  | 1  | 1500  |                  |
| 1600 – 1800               | 1700  | 1  | 1700  |                  |
|                           |       | 24 | 20400 |                  |
| Mean = $\frac{20400}{24}$ | = 850 |    |       | 1                |

The discus throw is an event in which an athlete attempts to throw a discus. The athlete spins anti-clockwise around one and a half times through a circle, then releases the throw. When released, the discus travels along tangent to the circular spin orbit.

(iii) Sub-divisions having good rainfall = 2 + 3 + 1 + 1 = 7.



In the given figure, AB is one such tangent to a circle of radius 75 cm. Point O is centre of the circle and  $\angle ABO = 30^{\circ}$ . PQ is parallel to OA.



1

|      | Based on above information:                                                     |                                                                                           |
|------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|      |                                                                                 |                                                                                           |
|      | <ul><li>(a) find the length of AB.</li><li>(b) find the length of OB.</li></ul> |                                                                                           |
|      |                                                                                 |                                                                                           |
|      | (c) find the length of AP.                                                      |                                                                                           |
|      | OR Find the length of PO                                                        |                                                                                           |
|      | Find the length of PQ                                                           |                                                                                           |
| Sol. | (i)tan $30^{\circ} = \frac{1}{\sqrt{3}} = \frac{75}{AB}$                        | 1                                                                                         |
|      | $\sqrt{3}$ AB                                                                   | $\overline{2}$                                                                            |
|      | $\Rightarrow$ AB = $75\sqrt{3}$ cm                                              | $ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $ |
|      |                                                                                 | $\overline{2}$                                                                            |
|      | 200 1 75                                                                        | 1                                                                                         |
|      | (ii)sin $30^{\circ} = \frac{1}{2} = \frac{75}{0B}$                              | $\overline{2}$                                                                            |
|      | $\Rightarrow$ OB = 150 cm                                                       | 1                                                                                         |
|      | → OB = 130 CIII                                                                 | $\overline{2}$                                                                            |
|      |                                                                                 |                                                                                           |
|      | (iii) $QB = 150 - 75 = 75 \text{ cm}$                                           | 1                                                                                         |
|      | ⇒ Q is mid point. of OB                                                         |                                                                                           |
|      | Since PQ ll AO therefore P is mid point of AB                                   |                                                                                           |
|      | Hence AP = $\frac{75\sqrt{3}}{2}$ cm.                                           | 1                                                                                         |
|      | Hence $AP = \frac{1}{2}$ cm.                                                    |                                                                                           |
|      | OR                                                                              | 1                                                                                         |
|      | (iii) $QB = 150 - 75 = 75 \text{ cm}$                                           | $\frac{1}{2}$                                                                             |
|      | Now, $\triangle$ BQP $\sim$ $\triangle$ BOA                                     | _                                                                                         |
|      | $\Rightarrow \frac{QB}{OB} = \frac{PQ}{OA}$                                     |                                                                                           |
|      | OB OA 1 PQ                                                                      | 1                                                                                         |
|      | $\Rightarrow \frac{1}{2} = \frac{PQ}{75}$                                       | 1                                                                                         |
|      | $\Rightarrow$ PQ = $\frac{75}{2}$ cm                                            | $\frac{1}{2}$                                                                             |
|      | 2                                                                               | 2                                                                                         |
|      |                                                                                 |                                                                                           |
|      |                                                                                 |                                                                                           |
|      |                                                                                 |                                                                                           |