## Marking Scheme Strictly Confidential (For Internal and Restricted use only) Secondary School Examination, 2025 SUBJECT NAME MATHEMATICS (BASIC) (Q.P. CODE 430/1/1)

|    | General Instructions: -                                                                                                                                                                                                                                                                                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that |
|    | before starting evaluation, you must read and understand the spot evaluation guidelines carefully.                                                                                                                                                                                                              |
| 2  | "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations                                                                                                                                                                                                         |
| _  | conducted, evaluation done and several other aspects. It's leakage to public in any manner could                                                                                                                                                                                                                |
|    | lead to derailment of the examination system and affect the life and future of millions of                                                                                                                                                                                                                      |
|    | candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in                                                                                                                                                                                                                  |
|    | News Paper/Website etc. may invite action under various rules of the Board and IPC."                                                                                                                                                                                                                            |
| 3  | Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done                                                                                                                                                                                                              |
|    | according to one's own interpretation or any other consideration. Marking Scheme should be strictly                                                                                                                                                                                                             |
|    | adhered to and religiously followed. However, while evaluating, answers which are based on                                                                                                                                                                                                                      |
|    | latest information or knowledge and/or are innovative, they may be assessed for their                                                                                                                                                                                                                           |
|    | correctness otherwise and due marks be awarded to them. In class-X, while evaluating two                                                                                                                                                                                                                        |
|    | competency-based questions, please try to understand given answer and even if reply is not                                                                                                                                                                                                                      |
|    | from marking scheme but correct competency is enumerated by the candidate, due marks                                                                                                                                                                                                                            |
| 4  | should be awarded.<br>The Marking asheres carries only suggested using a sinte for the ensurements                                                                                                                                                                                                              |
| 4  | These are in the nature of Guidelines only and do not constitute the complete ensurer. The students con                                                                                                                                                                                                         |
|    | have their own expression and if the expression is correct, the due marks should be awarded accordingly                                                                                                                                                                                                         |
| 5  | The Head Examiner must go through the first five answer books evaluated by each evaluator on the                                                                                                                                                                                                                |
| 5  | first day to ensure that evaluation has been carried out as per the instructions given in the Marking                                                                                                                                                                                                           |
|    | Scheme If there is any variation, the same should be zero after deliberation and discussion. The                                                                                                                                                                                                                |
|    | remaining answer books meant for evaluation shall be given only after ensuring that there is no                                                                                                                                                                                                                 |
|    | significant variation in the marking of individual evaluators.                                                                                                                                                                                                                                                  |
| 6  | Evaluators will mark ( $\checkmark$ ) wherever answer is correct. For wrong answer CROSS 'X" be                                                                                                                                                                                                                 |
|    | marked. Evaluators will not put right ( $\checkmark$ ) while evaluating which gives an impression that answer is                                                                                                                                                                                                |
|    | correct and no marks are awarded. This is most common mistake which evaluators are                                                                                                                                                                                                                              |
|    | committing.                                                                                                                                                                                                                                                                                                     |
| 7  | If a question has parts, please award marks on the right-hand side for each part. Marks awarded for                                                                                                                                                                                                             |
|    | different parts of the question should then be totaled up and written in the left-hand margin and                                                                                                                                                                                                               |
| 0  | encircled. This may be followed strictly.                                                                                                                                                                                                                                                                       |
| ð  | This may also be followed strictly.                                                                                                                                                                                                                                                                             |
| 9  | If a student has attempted an extra question, answer of the question deserving more marks should be                                                                                                                                                                                                             |
| -  | retained and the other answer scored out with a note "Extra Question".                                                                                                                                                                                                                                          |
| 10 | No marks to be deducted for the cumulative effect of an error. It should be penalized only once.                                                                                                                                                                                                                |
| 11 | A full scale of marks (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be                                                                                                                                                                                                               |
|    | used. Please do not hesitate to award full marks if the answer deserves it.                                                                                                                                                                                                                                     |
| 12 | Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day                                                                                                                                                                                                             |
|    | and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects                                                                                                                                                                                                             |
|    | (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions                                                                                                                                                                                                         |
|    | in question paper.                                                                                                                                                                                                                                                                                              |

| 13 | Ensure that you do not make the following common types of errors committed by the Examiner in the          |
|----|------------------------------------------------------------------------------------------------------------|
|    | past:-                                                                                                     |
|    | Leaving answer or part thereof unassessed in an answer book.                                               |
|    | Giving more marks for an answer than assigned to it.                                                       |
|    | Wrong totaling of marks awarded on an answer.                                                              |
|    | Wrong transfer of marks from the inside pages of the answer book to the title page.                        |
|    | Wrong question wise totaling on the title page.                                                            |
|    | Wrong totaling of marks of the two columns on the title page.                                              |
|    | Wrong grand total.                                                                                         |
|    | Marks in words and figures not tallying/not same.                                                          |
|    | Wrong transfer of marks from the answer book to online award list.                                         |
|    | Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and        |
|    | clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)                   |
|    | Half or a part of answer marked correct and the rest as wrong, but no marks awarded.                       |
| 14 | While evaluating the answer books if the answer is found to be totally incorrect, it should be marked      |
|    | as cross (X) and awarded zero (0) Marks.                                                                   |
| 15 | Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the    |
|    | candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the     |
|    | Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the            |
|    | instructions be followed meticulously and judiciously.                                                     |
| 16 | The Examiners should acquaint themselves with the guidelines given in the "Guidelines for                  |
|    | spot Evaluation" before starting the actual evaluation.                                                    |
| 17 | Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, |
|    | correctly totaled and written in figures and words.                                                        |
| 18 | The candidates are entitled to obtain photocopy of the Answer Book on request on payment of                |
|    | the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once             |
|    | again reminded that they must ensure that evaluation is carried out strictly as per value points for each  |
|    | answer as given in the Marking Scheme.                                                                     |
|    |                                                                                                            |

## 430/1/1

## MARKING SCHEME MATHEMATICS (BASIC)

|          |        | SEC                                                | ΓΙΟΝ        | I A                                  |   |
|----------|--------|----------------------------------------------------|-------------|--------------------------------------|---|
| This     | sectio | on has <b>20</b> Multiple Choice Quest             | ions (      | (MCQs) carrying 1 mark each. 20×1=20 |   |
| 1.       | If t   | he HCF of two positive integers                    | a and       | b is 1, then their LCM is :          |   |
|          | (A)    | a + b                                              | (B)         | a                                    |   |
|          | (C)    | b                                                  | (D)         | ab                                   |   |
| Answer : | : (D)  | ab                                                 |             |                                      | 1 |
| 2.       | The    | number $3 + \sqrt{2}$ is :                         |             |                                      |   |
|          | (A)    | a rational number                                  | (B)         | an irrational number                 |   |
|          | (C)    | an integer                                         | (D)         | a natural number                     |   |
| Answer : | : (B)  | an irrational number                               |             |                                      | 1 |
| 3.       | The    | discriminant of the quadratic eq                   | uatio       | n $x^2 - 3x - 2 = 0$ is:             |   |
|          | (A)    | 1                                                  | <b>(B</b> ) | 17                                   |   |
|          | (C)    | $\sqrt{17}$                                        | (D)         | $-\sqrt{17}$                         |   |
| Answer : | : (B)  | 17                                                 |             |                                      | 1 |
| 4.       | The    | equation $x + \frac{1}{x} = 3 \ (x \neq 0)$ is exp | resse       | d as a quadratic equation in the     |   |
|          | form   | of $ax^2 + bx + c = 0$ . The value of              | f a –       | b + c is:                            |   |
|          | (A)    | 5                                                  | (B)         | 2                                    |   |
|          | (C)    | 1                                                  | (D)         | - 1                                  |   |
| Answer : | : (A)  | 5                                                  |             |                                      | 1 |
| 5.       | For    | a point $(3, -5)$ , the value of (abs              | scissa      | a – ordinate) is :                   |   |
|          | (A)    | - 8                                                | (B          | ) – 2                                |   |
|          | (C)    | 2                                                  | (D          | ) 8                                  |   |
| Answer : | : (D)  | 8                                                  |             |                                      | 1 |
| 6.       | The    | mid-point of a line segment divi                   | des t       | he line segment in the ratio :       |   |
|          | (A)    | 1:2                                                | (B)         | 2:1                                  |   |
|          | (C)    | 1:1                                                | (D)         | $1 \frac{1}{2}:2$                    |   |
| Answer : | : (C)  | 1:1                                                |             |                                      | 1 |



| 1  | 10.  | Whie                              | h of the following statements is <i>false</i> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|----|------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    |      | (A)                               | $\tan 45^\circ = \cot 45^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|    |      | (B)                               | $\sin 90^\circ = \tan 45^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|    |      | (C)                               | $\sin 30^\circ = \cos 30^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|    |      | (D)                               | $\sin 45^\circ = \cos 45^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| An | swer | : (C)                             | $\sin 30^\circ = \cos 30^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 |
|    | 11.  | The                               | value of $\left(\tan^2 A - \frac{1}{\cos^2 A}\right)$ is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|    |      | (A)                               | more than 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|    |      | (B)                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|    |      | (C)                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|    |      | (D)                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| An | swer | : (D)                             | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 |
|    | 12.  | In<br>dej<br>Ob                   | the given figure, which of the following angles represents the angle of pression ?<br>server Horizontal line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|    |      |                                   | or si-<br>sight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|    |      |                                   | a x<br>Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|    |      | (A)                               | a x<br>Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|    |      | (A)<br>(B)                        | a x<br>Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|    |      | (A)<br>(B)<br>(C)                 | a x<br>Object<br>x<br>y<br>z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| An | swer | (A)<br>(B)<br>(C)<br>(D)<br>: (C) | a volume | 1 |

| 13.    | The perimeter of the shaded region in the given figure is :                            |                              |                           |             |            |              |           |          |   |   |
|--------|----------------------------------------------------------------------------------------|------------------------------|---------------------------|-------------|------------|--------------|-----------|----------|---|---|
|        |                                                                                        |                              |                           |             |            |              |           |          |   |   |
|        | (A)                                                                                    | l                            |                           |             |            |              |           |          |   |   |
|        | (B)                                                                                    | <i>l</i> + a                 |                           |             |            |              |           |          |   |   |
|        | (C)<br>(D)                                                                             | l + 2r                       |                           |             |            |              |           |          |   |   |
| Answer | (C) l + 2r                                                                             |                              |                           |             |            |              |           | 1        |   |   |
| 14.    | 4. The ratio of the area of a quadrant of a circle to the area of the same circle is : |                              |                           |             |            |              |           |          |   |   |
|        | (A) $1:2$<br>(B) $2:1$                                                                 |                              |                           |             |            |              |           |          |   |   |
|        | (C) $1:4$                                                                              |                              |                           |             |            |              |           |          |   |   |
|        | (C) $1:4$<br>(D) $4:1$                                                                 |                              |                           |             |            |              |           |          |   |   |
| Answer | : (C)                                                                                  | 1:4                          |                           |             |            |              |           |          |   | 1 |
| 15.    | For<br>total                                                                           | which of the<br>surface area | following s<br>the same a | solids is t | he lateral | /curved su   | rface are | a and    | - | I |
|        | (A)                                                                                    | Cube                         |                           |             |            |              |           |          |   |   |
|        | <b>(B)</b>                                                                             | Cuboid                       |                           |             |            |              |           |          |   |   |
|        | (C)                                                                                    | Hemispher                    | e                         |             |            |              |           |          |   |   |
|        | (D)                                                                                    | Sphere                       |                           |             |            |              |           |          |   |   |
| Answer | : (D)                                                                                  | Sphere                       |                           |             |            |              |           |          |   | 1 |
| 16.    | The                                                                                    | class mark of                | f the media               | n class of  | the follow | ving data is | 3:        |          |   | 1 |
|        | Cl                                                                                     | ass Interval                 | 10 - 25                   | 25 - 40     | 40 - 55    | 55 - 70      | 70 - 85   | 85 - 100 |   |   |
|        | Fr                                                                                     | equency                      | 2                         | 3           | 7          | 6            | 6         | 6        |   |   |
|        | (A)                                                                                    | 40                           |                           |             |            |              |           |          |   |   |
|        | (B)                                                                                    | 55                           |                           |             |            |              |           |          |   |   |
|        | (C)                                                                                    | 47.5                         |                           |             |            |              |           |          |   |   |
|        | (D)                                                                                    | 62.5                         |                           |             |            |              |           |          |   |   |
| Answer | : (D)                                                                                  | 62.5                         |                           |             |            |              |           |          |   | 1 |
|        |                                                                                        |                              |                           |             |            |              |           |          |   |   |

| 17.                | The following distribution shows the number of runs scored by some batsmen in test matches : |                                    |                                                 |                                  |                         |                        |     |   |  |  |
|--------------------|----------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|----------------------------------|-------------------------|------------------------|-----|---|--|--|
|                    | Run                                                                                          | s Scored                           | 3000 - 4000                                     | 4000 - 5000                      | 5000 - 6000             | 6000 - 7000            |     |   |  |  |
|                    | Nun                                                                                          | iber of Batsmen                    | 5                                               | 10                               | 9                       | 8                      |     |   |  |  |
|                    | The l                                                                                        | ower limit of the                  | modal class is                                  | :                                |                         |                        |     |   |  |  |
|                    | (A)                                                                                          | 3000                               |                                                 |                                  |                         |                        |     |   |  |  |
|                    | ( <b>B</b> )                                                                                 | 4000                               |                                                 |                                  |                         |                        |     |   |  |  |
|                    | (C)                                                                                          | 5000                               |                                                 |                                  |                         |                        |     |   |  |  |
|                    | (D) 6000                                                                                     |                                    |                                                 |                                  |                         |                        |     |   |  |  |
| Answer             | : (B) 4000                                                                                   |                                    |                                                 |                                  |                         |                        |     |   |  |  |
| 18.                | In a<br>sure                                                                                 | random experiment ?                | ment of throwi                                  | ng a die, whi                    | ch of the follo         | wing is a              | -   | 1 |  |  |
|                    | (A)                                                                                          | Getting a num                      | ber between 1                                   | and 6                            |                         |                        |     |   |  |  |
|                    | (B)                                                                                          | Getting an odd                     | l number < 7                                    |                                  |                         |                        |     |   |  |  |
|                    | (C)                                                                                          | Getting an eve                     | en number < 7                                   | -                                |                         |                        |     |   |  |  |
|                    | (D)                                                                                          | Getting a natu                     | iral number < 7                                 | (                                |                         |                        |     |   |  |  |
| Answer             | : (D)                                                                                        | Getting a natur                    | al number < 7                                   |                                  |                         |                        |     | 1 |  |  |
| Que                | stions                                                                                       | s number <b>19</b> a               | nd <b>20</b> are As                             | sertion and                      | Reason based            | d questions. T         | 'wo |   |  |  |
| state              | ement                                                                                        | s are given, on                    | e labelled as                                   | Assertion (A                     | ) and the oth           | her is labelled        | as  |   |  |  |
| Rea                | son (1                                                                                       | R). Select the co                  | orrect answer                                   | to these que                     | stions from t           | he codes (A), (        | B), |   |  |  |
| (C) (              | and (I                                                                                       | D) as given belo                   | w.                                              |                                  |                         |                        |     |   |  |  |
|                    | (A)                                                                                          | Both Assert<br>correct expl        | tion (A) and l<br>anation of As                 | Reason (R) as sertion (A).       | re true and I           | Reason (R) is t        | the |   |  |  |
|                    | (B)                                                                                          | Both Assert<br>the correct of      | tion (A) and H<br>explanation o                 | Reason (R) and<br>f Assertion (A | re true, but F<br>A).   | Reason (R) is <i>r</i> | not |   |  |  |
|                    | (C)                                                                                          | Assertion (A                       | A) is true, but                                 | Reason (R) i                     | s false.                |                        |     |   |  |  |
|                    | (D)                                                                                          | Assertion (A                       | Assertion (A) is false, but Reason (R) is true. |                                  |                         |                        |     |   |  |  |
| 19.                | Ass                                                                                          | sertion (A) : Fo                   | or any two nat<br>a factor of the               | tural number<br>e LCM of a ar    | s a and b, the<br>nd b. | e HCF of a and         | d b |   |  |  |
|                    | Ree                                                                                          | ason (R) : HO<br>nu                | CF of any mbers.                                | two natural                      | numbers of              | livides both           | the |   |  |  |
| Answer<br>explanat | : (A)<br>tion of                                                                             | Both Assertion<br>f Assertion (A). | (A) and Reas                                    | on (R) are true                  | e and Reason            | (R) is the corre       | ct  | 1 |  |  |





| OR                                                                                                                                                                                        |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (b) The factor tree of a number x is shown below :                                                                                                                                        |                 |
| x                                                                                                                                                                                         |                 |
| 2 y                                                                                                                                                                                       |                 |
| 2 210                                                                                                                                                                                     |                 |
| a 70                                                                                                                                                                                      |                 |
| 2 35                                                                                                                                                                                      |                 |
| 5 b                                                                                                                                                                                       |                 |
| Find the values of x, y, a and b. Hence, write the product of the prime factors of the number x so obtained.                                                                              |                 |
| Solution: (a) Let $\sqrt{3}$ be a rational number such that $\sqrt{3} = \frac{p}{q}$ (p and q are co-prime numbers, $q \neq q$                                                            | 0) 1/2          |
| $\sqrt{3q} = p \Rightarrow 3q^2 = p^2$ 3 divides $p^2 \Rightarrow 3$ divides p as well<br>Let, $p = 3m$ (for some integer m)<br>$2q^2 = 0m^2 \Rightarrow q^2 = 2m^2$                      | 1               |
| $3q = 911 \implies q = 511$<br>$3 \text{ divides } q^2 \implies 3 \text{ divides } q \text{ as well}$<br>p and q have a common factor 3, which is a contradiction as p and q are co-prime | . 1             |
| $\therefore$ our assumption is wrong<br>Hence, $\sqrt{3}$ is an irrational number                                                                                                         | 1/2             |
| OR                                                                                                                                                                                        | 1/              |
| (b) $b = 7$                                                                                                                                                                               | 1/2             |
| a = 3                                                                                                                                                                                     | <sup>7</sup> /2 |
| y = 420                                                                                                                                                                                   | 72              |
| x = 840                                                                                                                                                                                   | 72              |
| $\mathbf{x} = 840 = 2^3 \times 3 \times 5 \times 7$                                                                                                                                       | 1               |
| <ul> <li>Find a quadratic polynomial whose sum and product of zeroes are 0 and – 9, respectively. Also, find the zeroes of the polynomial so obtained.</li> </ul>                         |                 |
| Solution: Polynomial is $x^2 - 0(x) + (-9) = x^2 - 9$                                                                                                                                     | 1               |
| For zeroes :                                                                                                                                                                              |                 |
| $x^2 - 9 = (x + 3) (x - 3)$                                                                                                                                                               | 1               |
| Zeroes are -3, 3                                                                                                                                                                          | 1               |
| <b>28.</b> (a) Solve the following system of equations graphically :                                                                                                                      |                 |
| x + 3y = 6; 2x - 3y = 12                                                                                                                                                                  |                 |
| OR                                                                                                                                                                                        |                 |
| (b) x and y are complementary angles such that x : y = 1 : 2. Express<br>the given information as a system of linear equations in two<br>variables and hence solve it.                    |                 |

| Solution: (a) Correct graph of each equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1+1                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |
| Solution is $x = 6$ , $y = 0$ or (6, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                 |
| (b) $x + y = 90^{\circ}$<br>2x - y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                 |
| Solving to get $x = 30^\circ$ , $y = 60^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{1/2} + \frac{1}{2}$     |
| <b>29.</b> Prove that a rectangle circumscribing a circle is a square.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
| Solution:<br>$s \rightarrow c$<br>$s \rightarrow c$ | Correct<br>figure <sup>1</sup> /2 |
| As the length of tangents from an external point to a circle are equal<br>Thus,<br>AP = AS<br>BP = BQ<br>DR = DS<br>CR = CQ<br>Adding the above equations,<br>AB+CD=BC+AD<br>As AB = CD & BC = AD (opp. sides of rectangle)<br>$\Rightarrow AB = AD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                 |
| ∴ ABCD is a square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1⁄2                               |
| 30. Prove that :<br>$\frac{1 + \cot^2 A}{1 + \tan^2 A} = \left(\frac{1 - \cot A}{1 - \tan A}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
| Solution: LHS = $\frac{1 + \frac{\cos^2 A}{\sin^2 A}}{1 + \frac{\sin^2 A}{\cos^2 A}} = \frac{\frac{\sin^2 A + \cos^2 A}{\sin^2 A}}{\frac{\cos^2 A + \sin^2 A}{\cos^2 A}} = \frac{\cos^2 A}{\sin^2 A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                 |
| $= \frac{\cos^2 A}{\sin^2 A} \left(\frac{\sin A - \cos A}{\cos A - \sin A}\right)^2 = \left(\frac{\frac{\sin A - \cos A}{\sin A}}{\frac{\cos A - \sin A}{\cos A}}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11⁄2                              |
| $= \left(\frac{1-cotA}{1-tanA}\right)^{-} = \text{RHS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2                               |

| 31.                                                                  | A 1    | ot consists of 200 pens of which 180 are good and the rest are                                         |                             |  |  |  |  |  |
|----------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
|                                                                      | defe   | ective. A customer will buy a pen if it is not defective. The shopkeeper                               |                             |  |  |  |  |  |
|                                                                      | dra    | ws a pen at random and gives it to the customer. What is the                                           |                             |  |  |  |  |  |
|                                                                      | pro    | bability that the customer will not buy it ? Another lot of 100 pens                                   |                             |  |  |  |  |  |
|                                                                      | con    | taining 80 good pens is mixed with the previous lot of 200 pens. The                                   |                             |  |  |  |  |  |
|                                                                      | sho    | pkeeper now draws one pen at random from the entire lot and gives it                                   |                             |  |  |  |  |  |
|                                                                      | to t   | he customer. What is the probability that the customer will buy the                                    |                             |  |  |  |  |  |
|                                                                      | pen    | ?                                                                                                      |                             |  |  |  |  |  |
| Solution:                                                            | -      | P (customer will not buy the pen) = $\frac{20}{200} = \frac{1}{10}$                                    | 1                           |  |  |  |  |  |
|                                                                      |        | After mixing the two lots                                                                              |                             |  |  |  |  |  |
|                                                                      |        | Total pens = $200 + 100 = 300$                                                                         |                             |  |  |  |  |  |
|                                                                      |        | Number of good pens = $180 + 80 = 260$                                                                 |                             |  |  |  |  |  |
| P (customer will buy the pen) = $\frac{260}{300}$ or $\frac{13}{15}$ |        |                                                                                                        |                             |  |  |  |  |  |
|                                                                      |        | SECTION D                                                                                              |                             |  |  |  |  |  |
| This s                                                               | sectio | on has 4 Long Answer (LA) type questions carrying 5 marks each. $4 \times 5=20$                        |                             |  |  |  |  |  |
| 32.                                                                  | (a)    | The difference of the squares of two positive numbers is 180. The                                      |                             |  |  |  |  |  |
|                                                                      |        | square of the smaller number is 8 times the greater number. Find                                       |                             |  |  |  |  |  |
|                                                                      |        | the two numbers.                                                                                       |                             |  |  |  |  |  |
|                                                                      |        |                                                                                                        |                             |  |  |  |  |  |
|                                                                      |        | OK                                                                                                     |                             |  |  |  |  |  |
|                                                                      | (b)    | Find the value(s) of k for which the equation $2x^2 + kx + 3 = 0$ has                                  |                             |  |  |  |  |  |
|                                                                      |        | real and equal roots. Hence, find the roots of the equations so                                        |                             |  |  |  |  |  |
|                                                                      |        | obtained.                                                                                              | 1                           |  |  |  |  |  |
| Solution:                                                            | (a)    | Let the smaller number be y and greater number be x.                                                   |                             |  |  |  |  |  |
|                                                                      |        | A. I.Q.<br>$x^2 - y^2 = 180$                                                                           | 1                           |  |  |  |  |  |
|                                                                      |        | $y^2 = 8x$                                                                                             |                             |  |  |  |  |  |
|                                                                      |        | $\Rightarrow$ x <sup>2</sup> - 8x = 180                                                                |                             |  |  |  |  |  |
|                                                                      |        | $x^2 - 8x - 180 = 0$                                                                                   | 1                           |  |  |  |  |  |
|                                                                      |        | (x - 18) (x + 10) = 0<br>x - 18, x - 10 (rejected)                                                     | 1                           |  |  |  |  |  |
|                                                                      |        | $\therefore$ The numbers are 18 and 12                                                                 |                             |  |  |  |  |  |
|                                                                      |        |                                                                                                        | 1                           |  |  |  |  |  |
|                                                                      |        | OR OR                                                                                                  |                             |  |  |  |  |  |
|                                                                      | (b)    | For equal roots; $b^2 - 4ac = 0$<br>$k^2 - 24 - 0$                                                     | 1                           |  |  |  |  |  |
|                                                                      |        | k = 24 = 0<br>$\Rightarrow k = \pm 2\sqrt{6}$                                                          |                             |  |  |  |  |  |
|                                                                      |        | Equations are                                                                                          |                             |  |  |  |  |  |
|                                                                      |        | $2x^{2} + 2\sqrt{6}x + 3 = 0;$ $2x^{2} - 2\sqrt{6}x + 3 = 0$                                           | 1/ 1/                       |  |  |  |  |  |
|                                                                      |        | Roots are $x = -\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}};$ $x = \sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}$ | $\frac{1}{2} + \frac{1}{2}$ |  |  |  |  |  |
|                                                                      |        | <u> </u>                                                                                               | 1 + 1                       |  |  |  |  |  |

| 33.      | State  | e "Basic Proportionality Theorem" and use it to prove the following :                                                                                                                                                                                                     |                        |
|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|          | In a   | quadrilateral ABCD, diagonals AC and BD intersect each other at O                                                                                                                                                                                                         |                        |
|          | such   | that $\frac{AO}{BO} = \frac{CO}{DO}$ as shown in the given figure. Prove that ABCD is a                                                                                                                                                                                   |                        |
|          | trap   | ezium.                                                                                                                                                                                                                                                                    |                        |
| Solution | · Stat | $\frac{D}{A}$                                                                                                                                                                                                                                                             |                        |
| Solution | side   | in distinct points, the other two sides are divided in the same ratio.                                                                                                                                                                                                    | 1                      |
|          | Given  | : ABCD is a quadrilateral in which $\frac{AO}{AO} = \frac{CO}{AO}$                                                                                                                                                                                                        | Correct                |
|          |        | BO = DO                                                                                                                                                                                                                                                                   | given, to              |
|          | TO Pro | ve: AB    CD<br>ruction : Draw OF    AB                                                                                                                                                                                                                                   | prove and construction |
|          | Proof  | $\ln \Delta \text{ DAB OF } \parallel \text{AB}$                                                                                                                                                                                                                          | 1                      |
|          | 1001   | $\therefore \frac{DE}{AE} = \frac{DO}{BO} \text{ (by BPT)}$ $Also \frac{AO}{BO} = \frac{CO}{DO} \text{ (given)}$ $\Rightarrow \frac{DO}{BO} = \frac{CO}{AO}$ $Also = \frac{BO}{AO} = \frac{BO}{AO} = \frac{BO}{AO}$                                                       | 1                      |
|          |        | $\therefore \frac{DE}{AE} = \frac{CO}{AO}$<br>In $\triangle$ ADC,<br>$\frac{DE}{AE} = \frac{CO}{AO}$                                                                                                                                                                      | 1/2                    |
|          |        | $\therefore$ OE    CD (by converse of BP1)<br>As OE    AB and OE    CD                                                                                                                                                                                                    | 1                      |
|          |        | As $OE \parallel AB$ and $OE \parallel CD$                                                                                                                                                                                                                                | 1/2                    |
|          |        | Hence ABCD is a tranezium                                                                                                                                                                                                                                                 | 72                     |
| 34.      | (a)    | A toy is in the form of a cone surmounted on a hemisphere. The                                                                                                                                                                                                            |                        |
|          |        | part of the toy is equal to the diameter of its base. If the radius of the conical part is 5 cm, find the volume of the toy.                                                                                                                                              |                        |
|          |        | OR                                                                                                                                                                                                                                                                        |                        |
|          | (b)    | A cubical block is surmounted by a hemisphere of radius 3.5 cm.                                                                                                                                                                                                           |                        |
|          |        | What is the smallest possible length of the edge of the cube so that                                                                                                                                                                                                      |                        |
|          |        | the hemisphere can totally lie on the cube ? Find the total surface                                                                                                                                                                                                       |                        |
|          |        | area of the solid so formed.                                                                                                                                                                                                                                              |                        |
| Solution | 1:     | <ul> <li>(a) Radius = r = 5 cm</li> <li>Height of cone = h = 10 cm</li> <li>Volume of toy = volume of hemisphere + volume of cone</li> </ul>                                                                                                                              |                        |
|          |        | $-\frac{2}{2}\pi r^{3}+\frac{1}{2}\pi r^{2}h$                                                                                                                                                                                                                             |                        |
|          |        | $= \frac{-\frac{1}{3}}{\frac{2}{3}} \times \frac{\frac{22}{7}}{\frac{2}{7}} \times 5 \times 5 \times 5 + \frac{1}{3} \times \frac{\frac{22}{7}}{\frac{2}{7}} \times 5 \times 5 \times 10$ $= \frac{\frac{5500}{21}}{\frac{21}{7}} + \frac{\frac{5500}{21}}{\frac{21}{7}}$ | 2+2                    |
| 30/1/1   |        | 13                                                                                                                                                                                                                                                                        | <br>P.T.O              |

|          |                                                                                                                        | $=\frac{11000}{21}$ cu.             | cm or 523.8                       | 1 cu. cm       |                                   |                               | 1           |  |
|----------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|----------------|-----------------------------------|-------------------------------|-------------|--|
|          |                                                                                                                        | 21                                  | OR                                |                |                                   |                               |             |  |
|          | (b) Edge of cube = $a = 3.5 \times 2 = 7$ cm<br>Total surface area of solid<br>= $6 a^2 + 2\pi r^2 - \pi r^2$          |                                     |                                   |                |                                   |                               |             |  |
|          |                                                                                                                        | $= 6 a^2 + \pi r^2$                 | 2                                 |                |                                   |                               | 11/2 + 11/2 |  |
|          |                                                                                                                        | $= 6 \times 7 \times 7$             | $+\frac{22}{7} \times 3.5 \times$ | 3.5            |                                   |                               | 1/2 + 1/    |  |
|          |                                                                                                                        | $=\frac{665}{2}$ sq. cr             | n or $332.5$ so                   | q. cm          |                                   |                               | 1           |  |
| 35.      | <b>35.</b> The following data gives the information on the observed lifetime (in hours) of 200 electrical components : |                                     |                                   |                |                                   |                               |             |  |
|          |                                                                                                                        | Lifetime                            | Number of e                       | lectrical      |                                   |                               |             |  |
|          |                                                                                                                        | (in hours)                          | compon                            | ents           |                                   |                               |             |  |
|          |                                                                                                                        | 0 - 20                              | 10                                |                |                                   |                               |             |  |
|          |                                                                                                                        | 20 - 40                             | 35                                |                |                                   |                               |             |  |
|          |                                                                                                                        | 40 - 60                             | 50                                |                |                                   |                               |             |  |
|          | 60 - 80                                                                                                                |                                     |                                   |                |                                   |                               |             |  |
|          | 80 - 100                                                                                                               |                                     |                                   |                |                                   |                               |             |  |
|          |                                                                                                                        | 100 - 120                           | 15                                |                |                                   |                               |             |  |
|          | Find the                                                                                                               | mean lifetime (ir                   | n hours) of the                   | e electrical o | components.                       |                               |             |  |
| Solution | n:                                                                                                                     |                                     |                                   |                |                                   |                               |             |  |
|          |                                                                                                                        |                                     |                                   |                | $r_{i} = q$                       |                               |             |  |
|          | CI                                                                                                                     |                                     | x <sub>i</sub>                    | $f_i$          | $u_i = \frac{x_l - u}{20}$        | f <sub>i</sub> u <sub>i</sub> |             |  |
|          | 0 - 2                                                                                                                  | 20                                  | 10                                | 10             | -2                                | - 20                          | Correct     |  |
|          | 20 - 10                                                                                                                | 40                                  | 30                                | 35             | -1                                | - 35                          | table       |  |
|          | 40-                                                                                                                    | <u>60</u>                           | $50 \neq a$                       | 50             | 0                                 | 0                             | 2           |  |
|          | 80 -                                                                                                                   | <u>80</u><br>100                    | 90                                | 30             | 2                                 | 60                            |             |  |
|          | 100 -                                                                                                                  | - 120                               | 110                               | 15             | 3                                 | 45                            |             |  |
|          | Tota                                                                                                                   | 1                                   |                                   | 200            |                                   | 110                           |             |  |
|          | Me                                                                                                                     | $ean = 50 + \frac{110}{200} \times$ | 20                                |                | ·                                 |                               | 2           |  |
|          | Me                                                                                                                     | an = 61                             | 1                                 | 1              |                                   |                               | 1           |  |
|          | Th                                                                                                                     | us the mean life                    | sime of the e                     | TION E         | imponents is 61 h                 | ours.                         |             |  |
|          |                                                                                                                        |                                     | SEC                               | 10111          |                                   |                               |             |  |
|          |                                                                                                                        |                                     |                                   |                |                                   |                               |             |  |
| This s   | section ha                                                                                                             | s <b>3</b> case study l             | based questi                      | ons carryi     | ng <b>4</b> marks each            | 3×4                           | =12         |  |
|          |                                                                                                                        |                                     | Case                              | Study – 1      |                                   |                               |             |  |
| 36.      | An injur                                                                                                               | ed bird was for                     | und on the i                      | coof of a bu   | uilding. The buil                 | ding is 15 m                  |             |  |
|          | high. A                                                                                                                | fireman was                         | called to re                      | escue the      | bird. The firem                   | an used an                    |             |  |
|          | adjustab                                                                                                               | le ladder to re                     | ach the roo                       | t. He plac     | ed the ladder in the ground in or | such a way                    |             |  |
|          | the roof                                                                                                               | lauuer makes                        | an angle of                       | oo witii       | the ground in or                  | der to reach                  |             |  |
| L        |                                                                                                                        |                                     |                                   |                |                                   |                               |             |  |

| Based         | an the above information, answer the following questions :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| (;)           | Find the length of the ladder used by the firemen to reach the reaf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| (i)<br>(ii)   | Find the length of the point on the ground at which the ladder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| ()            | was fixed from the bottom of the building. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| (iii)         | In order to avoid skidding, the fireman placed the ladder in such a way that the bottom of the ladder touches the base of the wall which is opposite to the building, making an angle of $30^{\circ}$ with the ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|               | <ul> <li>(a) Draw a neat diagram to represent the above situation and hence find the width of the road between the building and the wall.</li> <li>2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|               | (b) Find the length of the ladder used by the fireman in this case. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |
| Solution: (i) | Let the length of the ladder be 'a' $\frac{15}{10} = \sin 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                     |
|               | $a^{a} = \frac{30}{\sqrt{2}}$ or $10\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72<br>1/2              |
|               | Thus the length of the ladder is $\frac{30}{\sqrt{3}}$ m or $10\sqrt{3}$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72                     |
| (ii)          | Let the distance of the point on the ground be 'x'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |
|               | $\frac{15}{x} = \tan 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1⁄2                    |
|               | $x = \frac{15}{\sqrt{3}} \text{ or } 5\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1⁄2                    |
|               | Thus, the distance of the point on the ground is $\frac{15}{\sqrt{3}}$ m or $5\sqrt{3}$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| (iii)         | (a) Let the width of the road be y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
|               | and a second sec | Correct<br>figure<br>1 |

٦



| Solution: (i) | $a_{13} = 650 \text{ cm}$                   |      |  |  |
|---------------|---------------------------------------------|------|--|--|
| (ii)          | $a_{n} = 500$                               |      |  |  |
|               | 50 + (n-1)50 = 500                          |      |  |  |
|               | n = 10                                      |      |  |  |
| (iii)         | (a) $a = 10, d = 10$                        |      |  |  |
|               | $S_{11} = \frac{11}{2} [20 + 10 \times 10]$ | 11/2 |  |  |
|               | $= 660^{2}$                                 | 1/2  |  |  |
|               | OR                                          |      |  |  |
|               | (b) $a = 10, d = 10$                        |      |  |  |
|               | $450 = \frac{n}{2} [20 + (n-1) \ 10]$       | 1    |  |  |
|               | $n^2 + n^2 = 00 - 0$                        | 1⁄2  |  |  |
|               | n - + n - 20 = 0                            | 1/2  |  |  |
|               | 11 – 7                                      |      |  |  |

## Case Study - 3

**38.** In a society, there is a circular park having two gates. The gates are placed at points A(10, 20) and B(50, 50), as shown in the figure below. Two fountains are installed at points P and Q on AB such that AP = PQ = QB.



Based on the above information, answer the following questions :

|           | <ul><li>(i) Find the coordinates of the centre C.</li><li>(ii) Find the radius of the circular park.</li></ul> |       |                                                                                   | 1 |     |
|-----------|----------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------|---|-----|
|           |                                                                                                                |       |                                                                                   | 1 |     |
|           | (iii)                                                                                                          | (a)   | Find the coordinates of the point P.                                              | 2 |     |
|           |                                                                                                                |       | OR                                                                                |   |     |
|           |                                                                                                                | (b)   | Find the distance of the fountain at Q from gate A.                               | 2 |     |
| Solution: |                                                                                                                | (i)   | Co-ordinates of C are $\left(\frac{10+50}{2}, \frac{20+50}{2}\right) = C(30, 35)$ |   | 1   |
|           |                                                                                                                | (ii)  | Radius = $\sqrt{(30 - 10)^2 + (35 - 20)^2} = 25$                                  |   | 1   |
|           |                                                                                                                | (iii) | (a) P divides AB in the ratio 1 : 2,                                              |   | 1/2 |

| co-ordinates of P are $\left(\frac{1 \times 50 + 2 \times 10}{3}, \frac{1 \times 50 + 2 \times 20}{3}\right)$ | <sup>1</sup> / <sub>2</sub> + <sup>1</sup> / <sub>2</sub> |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| i.e. $\left(\frac{70}{3}, 30\right)$                                                                          | 1⁄2                                                       |
| OR                                                                                                            |                                                           |
| (b) Distance $AB = 2 \times 25 = 50$                                                                          | 1⁄2                                                       |
| $AQ = \frac{2}{3}AB = \frac{2}{3} \times 50$                                                                  | 1                                                         |
| $AQ = \frac{100}{3}$                                                                                          | 1⁄2                                                       |